Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery.

نویسندگان

  • Katherine Ferrara
  • Rachel Pollard
  • Mark Borden
چکیده

This review offers a critical analysis of the state of the art of medical microbubbles and their application in therapeutic delivery and monitoring. When driven by an ultrasonic pulse, these small gas bubbles oscillate with a wall velocity on the order of tens to hundreds of meters per second and can be deflected to a vessel wall or fragmented into particles on the order of nanometers. While single-session molecular imaging of multiple targets is difficult with affinity-based strategies employed in some other imaging modalities, microbubble fragmentation facilitates such studies. Similarly, a focused ultrasound beam can be used to disrupt delivery vehicles and blood vessel walls, offering the opportunity to locally deliver a drug or gene. Clinical translation of these vehicles will require that current challenges be overcome, where these challenges include rapid clearance and low payload. The technology, early successes with drug and gene delivery, and potential clinical applications are reviewed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advances in Ultrasound Mediated Gene Therapy Using Microbubble Contrast Agents

Microbubble ultrasound contrast agents have the potential to dramatically improve gene therapy treatments by enhancing the delivery of therapeutic DNA to malignant tissue. The physical response of microbubbles in an ultrasound field can mechanically perturb blood vessel walls and cell membranes, enhancing drug permeability into malignant tissue. In this review, we discuss literature that provid...

متن کامل

Sonoporation: mechanistic insights and ongoing challenges for gene transfer.

Microbubbles first developed as ultrasound contrast agents have been used to assist ultrasound for cellular drug and gene delivery. Their oscillation behavior during ultrasound exposure leads to transient membrane permeability of surrounding cells, facilitating targeted local delivery. The increased cell uptake of extracellular compounds by ultrasound in the presence of microbubbles is attribut...

متن کامل

Diagnostic and therapeutic research on ultrasound microbubble/nanobubble contrast agents (Review).

The contrast enhanced imaging function of ultrasound contrast agents (UCAs) has been extensively investigated using physical acoustic signatures. It has a number of novel applications, including tissue‑specific molecular imaging and multi‑modal imaging. In addition there are numerous other therapeutic applications of UCAs, for example as vehicles for drug or gene delivery. These uses are discus...

متن کامل

Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design.

Ultrasound contrast agents are highly echogenic microbubbles with many unique properties. Microbubbles can basically improve the sensitivity of conventional ultrasound imaging to the microcirculation. The resonance of microbubbles in response to an incident ultrasound pulse results in nonlinear harmonic emission that serves as the signature of microbubbles in microbubble-specific imaging. Inert...

متن کامل

Physical principles of microbubbles for ultrasound imaging and therapy.

Microbubble ultrasound contrast agents have been in clinical use for more than two decades, during which time their range of applications has increased to encompass echocardiography, Doppler enhancement, perfusion studies and molecular imaging, as well as a number of therapeutic applications including drug delivery, gene therapy, high-intensity focused ultrasound treatments and sonothrombolysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of biomedical engineering

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2007